Cluster merging and splitting in hierarchical clustering algorithms

نویسندگان

  • Chris H. Q. Ding
  • Xiaofeng He
چکیده

Hierarchical clustering constructs a hierarchy of clusters by either repeatedly merging two smaller clusters into a larger one or splitting a larger cluster into smaller ones. The crucial step is how to best select the next cluster(s) to split or merge. Here we provide a comprehensive analysis of selection methods and propose several new methods. We perform extensive clustering experiments to test 8 selection methods, and find that the average similarity is the best method in divisive clustering and the MinMax linkage is the best in agglomerative clustering. Cluster balance is a key factor to achieve good performance. We also introduce the concept of objective function saturation and clustering target distance to effectively assess the quality of clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A partition-based algorithm for clustering large-scale software systems

Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...

متن کامل

Crop Type Classification Based on Clonal Selection Algorithm for High Resolution Satellite Image

This paper presents a hierarchical clustering algorithm for crop type classification problem using multi-spectral satellite image. In unsupervised techniques, the automatic generation of clusters and its centers is not exploited to their full potential. Hence, a hierarchical clustering algorithm is proposed which uses splitting and merging techniques. Initially, the splitting method is used to ...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

Minimum spanning tree based split-and-merge: A hierarchical clustering method

Most clustering algorithms become ineffective when provided with unsuitable parameters or applied to datasets which are composed of clusters with diverse shapes, sizes, and densities. To alleviate these deficiencies, we propose a novel split-and-merge hierarchical clustering method in which a minimum spanning tree (MST) and an MST-based graph are employed to guide the splitting and merging proc...

متن کامل

SMART: Unique Splitting-While-Merging Framework for Gene Clustering

Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named "splitting merging awareness tactics" (SMART), which does not req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002